CS258: Information Theory

Fan Cheng Shanghai Jiao Tong University

http://www.cs.situ.edu.cn/~chengfan/ chengfan@situ.edu.cn Spring, 2020

Outline

- ☐ Differential Entropy
- AEP for Continuous Random Variable
- Relative Entropy and Mutual Information
- Property of Differential Information Measures
- Information inequalities and applications

Differential Entropy

■ Let X be a random variable with cumulative distribution function

$$F(x) = \Pr(X \le x)$$

- If F(x) is continuous, the random variable is said to be **continuous**
- Let f(x) = F'(x) when the derivative is defined. If $\int_{-\infty}^{\infty} f(x) = 1$, f(x) is called the probability density function for X.
- The set where f(x) > 0 is called the support set of X.

The **differential entropy** h(X) of a continuous random variable X with density f(x) is defined as

$$h(X) = -\int_{S} f(x) \log f(x) dx$$

where S is the support set of the random variable.

The differential entropy is sometimes written as h(f) rather than h(X)

 \blacksquare h(X+c) = h(X) (Translation does not change the differential entropy)

$$p(x)\Rightarrow f(x)$$

$$\sum \Rightarrow \int H(X)\Rightarrow h(X)$$
 $H(X)$ is always non-negative. $h(X)$ may be negative

Differential Entropy: Example

- lacksquare Consider a random variable distributed uniformly from 0 to a, then $m{h}(m{X}) = m{\log} m{a}$
- Let $X \sim \mathcal{N}(\mu, \sigma^2)$, then $h(X) = \frac{1}{2} \log 2\pi e \sigma^2$
- When X is uniformly distributed in [0, a],

$$f(x) = 1/a$$

$$h(X) = -\int_{0}^{a} \frac{1}{a} \log \frac{1}{a} dx = \log a$$

■ When X is Gaussian $\mathcal{N}(\mu, \sigma^2)$, then

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$h(f(x)) = -\int f(x) \log f(x) \, dx$$

$$= -\int f(x) \log \frac{1}{\sqrt{2\pi\sigma^2}} + f(x) \left(-\frac{(x-\mu)^2}{2\sigma^2} \right) dx$$

$$\int f(x) dx = 1 \text{ and } Var(X) = \int (x-\mu)^2 f(x) dx = \sigma^2$$

$$h(f(x)) = \frac{1}{2} \log 2\pi\sigma^2 + \frac{1}{2} = \frac{1}{2} \log 2\pi e\sigma^2$$

Mean and Variance

h(X): Infinite Information

- Differential entropy does not serve as a measure of the average amount of information contained in a continuous random variable.
- In fact, a continuous random variable generally contains an infinite amount of information

Let X be uniformly distributed on [0,1). Then we can write

$$X = 0.X_1X_2, \dots$$

The dyadic expansion of X, where $X_i'S$ is a sequence of i.i.d bits.

Then

$$H(X) = H(X_1, X_2, \dots)$$

$$= \sum_{i=1}^{\infty} H(X_i)$$

$$= \sum_{i=1}^{\infty} 1$$

$$= \infty$$

Differential entropy does not serve as a measure of the average amount of information contained in \boldsymbol{X}

-- Ch. 10, R. W. Yeung, Information theory and Network Coding

h(aX)

$$h(aX) = h(X) + \log|a|$$

$$h(AX) = h(X) + \log|\det A|$$

Let
$$Y=aX$$
. Then $f_Y(y)=\frac{1}{|a|}f_X(\frac{y}{a})$, and
$$h(aX)=-\int f_Y(y)\log f_Y(y)\,dy$$

$$=-\int \frac{1}{|a|}f_X\left(\frac{y}{a}\right)\log\left(\frac{1}{|a|}f_X\left(\frac{y}{a}\right)\right)dy$$

$$=-\int f_X(x)\log f_X(x)\,dx+\log|a|$$

$$=h(X)+\log|a|$$

 $h(AX) = h(X) + \log|\det(A)|$

Differential and Discrete Entropy

- \blacksquare Suppose that we divide the range of X into bins of length \triangle .
- lacktriangle By the mean value theorem, there exists a value x_i within each bin such that

$$f(x_i)\Delta = \int_{i\Delta}^{(i+1)\Delta} f(x) \, dx$$

 \blacksquare Consider the quantized random variable X^{Δ} , which is defined by

$$X^{\Delta} = x_i \text{ if } i\Delta \leq x < (i+1)\Delta$$

■ Then the probability that $X^{\Delta} = x_i$ is

$$H(X^{\Delta}) + \log \Delta \rightarrow h(f) = h(X)$$
, as $\Delta \rightarrow 0$

$$X^{\Delta} = x_i$$
 is
$$p_i = \int_{i\Delta}^{(i+1)\Delta} f(x) \, dx = f(x_i)\Delta$$

$$H(X^{\Delta}) = -\sum \Delta f(x_i) \log f(x_i) - \log \Delta$$

AEP For Continuous Random Variable

■ AEP for continuous random variables:

Let X_1, X_2, \ldots, X_n be a sequence of random variables drawn i.i.d. according to the density f(x). Then

$$-\frac{1}{n}\log f(X_1, X_2, ..., X_n) \to E(-\log f(X)) = h(f)$$

in probability

■ For $\epsilon > 0$ and any n, we define the typical set $A_{\epsilon}^{(n)}$ with respect to f(x) as follows:

$$A_{\epsilon}^{(n)} = \left\{ (x_1, x_2, \dots, x_n) \in S^n : \left| -\frac{1}{n} \log f(x_1, x_2, \dots, x_n) - h(X) \right| \le \epsilon \right\}$$

where $f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$.

■ The volume of a set $A \subset \mathbb{R}^n$ is defined as

$$Vol(A) = \int_A dx_1 dx_2 \dots dx_n.$$

- lacksquare The typical set $A_{\epsilon}^{(n)}$ has the following properties:
 - 1. $\Pr(A_{\epsilon}^{(n)}) > 1 \epsilon$ for n sufficiently large.
 - 2. Vol $\left(A_{\epsilon}^{(n)}\right) \le 2^{n(h(X)+\epsilon)}$ for all n.
 - 3. $\operatorname{Vol}\left(A_{\epsilon}^{(n)}\right) \geq (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large.

 $2^{nh(X)}$ is the volume

$h(X_1, X_2, \dots, X_n)$ and h(X|Y)

■ The differential entropy of a set $X_1, X_2, ..., X_n$ of random variables with density $f(x_1, x_2, ..., x_n)$ is defined as

$$h(X_1, X_2, \dots, X_n) = -\int f(x^n) \log f(x^n) dx^n$$

If X,Y have a joint density function f(x,y), we can define the conditional differential entropy h(X|Y) as

$$h(X|Y) = -\int f(x,y) \log f(x|y) dx dy.$$

$$h(X|Y) = h(X,Y) - h(Y)$$

- $h(X|Y) \le h(X)$ with equality iff X and Y are independent.
- (Chain rule for differential entropy)

$$h(X_1, X_2, ..., X_n) = \sum_{i=1}^n h(X_i | X_1, X_2, ..., X_{i-1})$$

■ $h(X_1, X_2, ..., X_n) \leq \sum_{i=1}^n h(X_i)$ with equality iff $X_1, X_2, ..., X_n$ are independent.

Covariance Matrix

 \blacksquare The **covariance** between two random variables X and Y is defined as

$$cov(X;Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$$

For a random vector $X = [X_1, X_2, ..., X_n]^T$, the **covariance matrix** is defined as

$$K_X = E(X - EX)(X - EX)^T = [cov(X_i; X_i)]$$

and the correlation matrix is defined as

$$\widetilde{K}_X = EXX^T = [EX_iX_i]$$

- $K_X = EXX^T (EX)(EX^T) = \widetilde{K}_X (EX)(EX^T)$
- A covariance matrix is both symmetric and positive semidefinite.
 - The eigenvalues of a positive semidefinite matrix are non-negative.
- Let Y = AX, where X and Y are column vectors of n random variables and A is an $n \times n$ matrix. Then

$$K_Y = AK_XA^T$$

and

$$\widetilde{K}_Y = A\widetilde{K}_Y A^T$$

A set of correlated random variables can be regarded as an orthogonal transformation of a set of uncorrelated random variables.

--Ref: Ch. 10.1 Yeung, Information theory and network coding

Multivariate Normal Distribution

- In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions.
- More generally, let $\mathcal{N}(\mu, K)$ denote the multivariate Gaussian distribution with mean μ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T K^{-1}(\mathbf{x} - \mu)}$$

■ One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution.

- In general, random variables may be uncorrelated but statistically dependent.
- But if a random vector has a multivariate normal distribution then any two or more of its components that are uncorrelated are independent.
- This implies that any two or more of its components that are pairwise independent are independent.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Entropy of Multivariate Normal Distribution

(Entropy of a multivariate normal distribution) Let X_1, X_2, \dots, X_n have a multivariate normal distribution with mean μ and covariance matrix K

$$h(X_1, X_2, ..., X_n) = h(\mathcal{N}(\mu, K)) = \frac{1}{2} \log(2\pi e)^n |K|$$

where |K| denotes the determinant of K.

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T K^{-1}(\mathbf{x}-\mu)}$$

 $h(AX) = h(X) + \log |\det(A)|$ Ref: Ch. 10.3 Yeung

$$h(f) = -\int f(\mathbf{x}) \left[-\frac{1}{2} (\mathbf{x} - \mu)^T K^{-1} (\mathbf{x} - \mu) - \ln \left(\sqrt{2\pi} \right)^n |K|^{\frac{1}{2}} \right] d\mathbf{x}$$

$$= \frac{1}{2} E \left[\sum_{i,j} (X_i - \mu_i) (X_j - \mu_j) \left(K^{-1} \right)_{ij} \right] + \frac{1}{2} \ln(2\pi)^n |K|$$

$$= \frac{1}{2} \sum_{i,j} E[(X_j - \mu_j) (X_i - \mu_i)] \left(K^{-1} \right)_{ij} + \frac{1}{2} \ln(2\pi)^n |K|$$

$$= \frac{1}{2} \sum_{i} \sum_{i} K_{ji} \left(K^{-1} \right)_{ij} + \frac{1}{2} \ln(2\pi)^n |K|$$

$$= \frac{1}{2} \sum_{i} (KK^{-1})_{jj} + \frac{1}{2} \ln(2\pi)^n |K|$$

$$= \frac{1}{2} \sum_{j} I_{jj} + \frac{1}{2} \ln(2\pi)^{n} |K|$$

$$= \frac{n}{2} + \frac{1}{2} \ln(2\pi)^{n} |K|$$

$$= \frac{1}{2} \ln(2\pi e)^{n} |K| \quad \text{nats}$$

$$= \frac{1}{2} \log(2\pi e)^{n} |K| \quad \text{bits.}$$

Relative Entropy

The relative entropy (or Kullback–Leibler distance) D(f||g) between two densities f and g is defined by

$$D(f||g) = \int f \log \frac{f}{g}$$

The mutual information I(X; Y) between two random variables with joint density f(x, y) is defined as

$$I(X;Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy$$

- I(X;Y) = h(X) h(X|Y) = h(Y) h(Y|X) = h(X) + h(Y) h(X,Y)I(X;Y) = D(f(X,Y)||f(X)f(Y))
- $D(f||g) \ge 0$ with equality iff f = g almost everywhere (a.e.).
- $I(X;Y) \ge 0$ with equality iff X and Y are independent.

Mutual Information: Master Definition

The mutual information between two random variables is the limit of the mutual information between their quantized versions

$$I(X^{\Delta}; Y^{\Delta}) = H(X^{\Delta}) - H(X^{\Delta}|Y^{\Delta})$$

$$\approx h(X) - \log \Delta - (h(x|y) - \log \Delta)$$

$$= I(X; Y)$$

Definition. The mutual information between two random variables X and Y is given by

$$I(X;Y) = \sup_{\mathcal{P},\mathcal{Q}} I([X]_{\mathcal{P}}; [Y]_{\mathcal{Q}})$$

where the supremum is over all finite partitions ${\mathcal P}$ and ${\mathcal Q}$

Let \mathcal{X} be the range of a random variable X. A partition \mathcal{P} of \mathcal{X} is a finite collection of disjoint sets P_i such that $\cup_i P_i = \mathcal{X}$. The quantization of X by \mathcal{P} (denoted $[X]_{\mathcal{P}}$) is the discrete random variable defined by

$$\Pr([X]_P = i) = \Pr(X \in P_i) = \int_{P_i} dF(x)$$

For two random variables X and Y with partitions \mathcal{P} and \mathcal{Q} , we can calculate the mutual information between the quantized versions of X and Y

This is the master definition of mutual information that always applies, even to joint distributions with atoms, densities, and singular parts.

Summary

Cover: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6

Yeung: Ch. 10.1, 10.2