CS258: Information Theory

Fan Cheng
Shanghai Jiao Tong University

http: / /www.cs.sjtu.edu.cn/~chengfan/

chengfan@sijtu.edu.cn
Spring, 2020



http://www.cs.sjtu.edu.cn/~chengfan/
mailto:chengfan@sjtu.edu.cn

Outline

[0 Differential Entropy

OO AEP for Continuous Random Variable

[0 Relative Entropy and Mutual Information

O Property of Differential Information Measures

O Information inequalities and applications



Differential Entropy

B Let X be a random variable with cumulative distribution function
F(x) =Pr(X <x)
B If F(x) is continuous, the random variable is said to be continuous
B Let f(x) = F'(x) when the derivative is defined. If ffooof(x) =1, f(x) is called the

probability density function for X.
B The set where f(x) > 0 is called the support set of X.

The differential entropy h(X) of a continuous random variable X with density f(x) is
defined as

RQX) = — fs £ log f(x) dx

where § is the support set of the random variable.
The differential entropy is sometimes written as h(f) rather than h(X)

B h(X +c) = h(X) (Translation does not change the differential entropy)

p(x) = f(x)
.=/

H(X) = h(X)
H(X) is always non-negative. h(X) may be negative




Differential Entropy: Example

B Let X ~ V(p,02), then h(X) = %log 2mea?

B Consider a random variable distributed uniformly from O to a, then h(X) = log a

B When X is uniformly distributed in [0, a],
fix) =1/a
a
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h(X): Infinite Information

B Differential entropy does not serve as a measure of the average amount of
information contained in a continuous random variable.
B In fact, a continuous random variable generally contains an infinite amount of

information

Let X be uniformly distributed on [0,1). Then we can write
X = O.Xle, .
The dyadic expansion of X, where X;s is a sequence of i.i.d bits.

Then
H(X) = H(XliXZ) )

= ) H(X;)
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Differential entropy does not serve as a measure of the average amount of

information contained in X
--Ch. 10, R. W. Yeung, Information theory and Network Coding




h(aX)

h(aX) = h(X) + log|a|
h(AX) = h(X) + log|det A|

Let Y = aX. Then fy,(y) = ifx(i), and

la|

h(aX) = — j fr () log fy () dy

=~ [t () ()

= — ij(x)long(x) dx + log|al
= h(X) + log|a|

h(AX) = h(X) + log |det(A)|




Differential and Discrete Entropy

fix)

o

X

B Suppose that we divide the range of X into bins of length A.

B By the mean value theorem, there exists a value x; within each bin such that
(i+1)A

FGOA = j £ () dx

1A
B Consider the quantized random variable X2, which is defined by

X2 =x;ifiA<x<(i+ 1A

B Then the probability that K = X; is H(X2) +1ogA - h(f) = h(X),as A > 0

(i+1)A
pi=|  Fdr= G
- H(X*) = —YAf(x))logf (x;) —log A




AEP For Continuous Random Variable

B AEP for continuous random variables:
Let X1, X5, ..., X;; be a sequence of random variables drawn i.i.d. according to the

density f(x). Then
1
——log f(X1, Xz, .. Xu) = E(~log f(X)) = h(f)

in probability
B For € > 0 and any n, we define the typical set Agn) with respect to f(x) as follows:

1
Agn) = {(xl,xz, ) Xy) €ES™: —glogf(xl,xz, vy Xpn) —h(X)| < E}

where f (1, Xz, 1, X)) = Ty £ (%)

B The volume of a set A € R" is defined as

Vol(A) = jdxldxz e dXy,.
A

B The typical set Agn) has the following properties:

27h(X) is the volume

m . Pr(Agn)) > 1 — € for n sufficiently large.
H 2 Vol (Agn)) < 2n(h(X)+6) for gl 1.

H 3. Vol (Agn)) > (1 — €)2M "X~ for n sufficiently large.



h(Xl,Xz, ,Xn) and h(X‘Y)

B The differential entropy of a set X;, X5, ..., X;; of random variables with density
f(xq1,%5, ..., X,,) is defined as
h(X1, X3, ..., Xp) = —J f(x™)log f(x™)dx"
B If X,Y have a joint density function f(x,y), we can define the conditional differential
entropy h(X|Y) as

h(X|Y) = —[ f(x,y)logf(x|y) dx dy.
h(X|Y) = h(X,Y) — h(Y)

B A(X|Y) < h(X)
with equality iff X and Y are independent.
B (Chain rule for differential entropy)

n
WXy, Xy, o X)) = z RO\ X1, Xy, o, X o)
i=1

B h(X, Xy, ., X)) < XERX)
with equality iff X;, X,, ..., X;; are independent.



Covariance Matrix

B The covariance between two random variables X and Y is defined as
cov(X;Y) =E(X—-EX)(Y - EY) = E(XY) — (EX)(EY)
B For a random vector X = [X{, X, ..., X,,]7, the covariance matrix is defined as
Kx = EX-EX)(X - EX)" = [cov(X;; X;)]
and the correlation matrix is defined as
Kx = EXX" = [EX;X|]
B Ky =EXXT — (EX)(EXT) = Kx — (EX)(EXT)

B A covariance matrix is both symmetric and positive semidefinite.
B The eigenvalues of a positive semidefinite matrix are non-negative.
B LletY = AX, where X and Y are column vectors of n random variables and A is an
n X n matrix. Then
Ky = AK AT
and
Ky = AR, AT

A set of correlated random variables can be regarded as an orthogonal
transformation of a set of uncorrelated random variables.
--Ref: Ch. 10.1 Yeung, Information theory and network coding




Multivariate Normal Distribution

B In probability theory and statistics, the multivariate normal distribution, multivariate
Gaussian distribution, or joint normal distribution is a generalization of the one-
dimensional (univariate) normal distribution to higher dimensions.

B More generally, let N'(u, K) denote the multivariate Gaussian distribution with mean u
and covariance matrix K, i.e., the joint pdf of the distribution is given by

1 —
_ 1 ~5 (=@ K~ (x~p)
f) = n e
(V2m) |K|1/2
B One definition is that a random vector is said to be k-variate normally distributed if
every linear combination of its k components has a univariate normal distribution.

B In general, random variables may be uncorrelated
0.02 but statistically dependent.
B But if a random vector has a multivariate normal

2\ distribution then any two or more of its components
A\
'::\\\ that are uncorrelated are independent.

B This implies that any two or more of its components

/)
/4
/%: \\\&‘

N

that are pairwise independent are independent.

-10 10 https: / /en.wikipedia.org/wiki/Multivariate _normal_distribution
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Entropy of Multivariate Normal Distribution

(Entropy of a multivariate normal distribution) Let X4, X5, ..., X,, have a multivariate normal
distribution with mean | and covariance matrix K

1
h(X1, X2, ... X)) = (W (p, K)) =§log(2ne)“lK|

where |K| denotes the determinant of K.

Fx) = I LY St

"k
( ) K] h(AX) = h(X) + log |det(A)]|
1 " | Ref: Ch. 10.3 Yeung
h(f)=— f f(x)[—i(x — WK (x— 1) —In (m) |K|7] dx
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Relative Entropy

B The relative entropy (or Kullback-Leibler distance) D(f||g) between two densities f
and g is defined by

D(fllg) = f flogg

B The mutual information I(X; ¥) between two random variables with joint density
f(x,y) is defined as

f(x,y)

FOF o) Y

I(X;Y) = j £ (G y)log a2

B /(X;Y) =h(X) - hX|Y) = h(Y) - h(|X) = h(X) + h(Y) — h(X,Y)
[X;Y) =D (e MIfF)f ()
B D(fllg) =0

with equality iff f = g almost everywhere (a.e.).
B /(X;Y)=>0
with equality iff X and Y are independent.



Mutual Information: Master Definition

The mutual information between two random variables is the limit of the mutual
information between their quantized versions
1(xX%Y2) = H(X?) — H(X2|v2)
~ h(X) —logA — (h(x]y) —logA)
=1(X;Y)

Definition. The mutual information between two random variables X and Y is given by

1(X;Y) = sup I([X]p; [Y]g)
PO

where the supremum is over all finite partitions P and Q

B Let X be the range of a random variable X. A partition P of X is a finite collection of
disjoint sets P; such that U; P; = X. The quantization of X by P (denoted [X]p) is the
discrete random variable defined by

Pr([X]p =i) =Pr(X € P;) = | dF(x)
P;

B For two random variables X and Y with partitions P and Q, we can calculate the mutual

information between the quantized versions of X and YV

This is the master definition of mutual information that always applies,
even to joint distributions with atoms, densities, and singular parts.




Summary

Cover: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6
Yeung: Ch. 10.1, 10.2



