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Background and causal analysis framework

1.1 Motivation

The introduction of causal techniques into recommender systems (RS) has
brought great development to this field and has gradually become a trend.

On one hand, the existing causal methods in RS lack a clear causal and
mathematical formalization on the scientific questions of interest. Many
confusions need to be clarified: what exactly is being estimated, for what
purpose, in which scenario, by which technique, and under what plausible
assumptions.

On the other hand, technically speaking, the existence of various biases is
the main obstacle to drawing causal conclusions from observed data. Yet,
formal definitions of the biases in RS are still not clear, which leads to
difficulty in discussing theoretical properties and limitations of various
debiasing approaches.

Both of the limitations greatly hinder the development of RS.

5 / 75



Background and causal analysis framework

1.2 Goal

Biases in RS

Selection bias
Conformity Bias
Exposure Bias
Position Bias
Inductive Bias
Popularity Bias

……

Biases in Causal
Inference

Noncompliance
Interference bias

Unmeasured confounding
Confounding bias

Selection bias
Model assumption

……

Formalize different tasks/scenarios in RS using causal framework.

Provide formal definitions of various biases in RS.
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Background and causal analysis framework

1.3 Causal framework

Potential outcome framework (PO).

unit

treatment outcome
potential
outcome

Target
population

Estimand

Identification: a set of assumptions. mathematical tools.

Structural causal model (SCM).

structural equation model;
causal graph.

Identification: causal graph; other assumptions. do-calculus.

7 / 75



Background and causal analysis framework

1.4 Causal analysis framework

Scientific
Questions

ConclusionsCausal Analysis
Framework

Causal Estimands

Recoverability

EstimationModelsData

Figure 1: A unified workflow.

A unified workflow of investigating causal problems consists of three steps:

1 Define a causal estimand to answer the scientific question.

2 Discuss the recoverability of the estimand given the data.

3 Build models to obtain the consistent estimator of the estimand.
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Background and causal analysis framework

1.4 Causal analysis framework

Real worldImaginary world

Scientific question Causal estimand

PO framework

Data

Identifiability/
Recoverability

Models

Conclusions
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Background and causal analysis framework

1.4 Causal analysis framework

Scientific question Causal estimand

PO framework

Data

Identifiability/
Recoverability

Models

Conclusions

Assumptions
Assumptions

Assumptions
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Background and causal analysis framework

1.5 Overview of Main conclusions

Table 1: New perspective of biases in RS.

Assumptions Biases in causal inference Biases in RS

Define causal estimands
SUTVA(a) undefined position bias
SUTVA(b) interference bias conformity bias

Recoverability

consistency noncompliance undefined
positivity undefined exposure bias
exchangeability confounding bias popularity bias
conditional exchangeability hidden confounding bias undefined
random sampling selection bias user selection bias, exposure bias

Model model specification model mis-specification inductive bias

Significance:

It provides an opportunity to apply the existing causal inference methods to
RS. For example, the non-compliance problem and interference bias have
been intensively studied in causal inference literature.

In addition, for the unique characteristics of RS, we expect that a series of
new methods will be developed by weakening or substituting the
assumptions.
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Potential outcome framework

2.1 Key elements in PO framework

unit

treatment outcome
potential
outcome

Target
population

Estimand

Remarks:

1 PO does not involve the data collected and the model adopted;

2 It also does not specify the relationships among treatment, feature, and
outcome.
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Potential outcome framework

2.2 Unit

The unit is the most fine-grained research subject.

A clear explanation of it is very important to define the causal estimand,
particularly in the field of RS.

In RS, a unit usually corresponds to a user-item pair; sometimes it is a user.

The variety and vagueness of the unit stem from the fact that RS involves two
entangled populations: users and items.
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Potential outcome framework

2.3 Treatment, covariate and outcome

For each unit, we have a treatment, an outcome, and possibly a feature vector.

A treatment T ∈ T , that is performed at a well-defined time.

A feature X , measured at a well-defined time before treatment.

An outcome Y , measured at a well-defined time after treatment.

Treatment (T)

t1t0

Feature (X) Outcome (Y)

t2

If different units are measured at different times, they would not be comparable.
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Potential outcome framework

2.4 Potential outcome

However, T , X and Y are still not enough to define a causal estimand.

Definition (Potential outcome)

A potential (or counterfactual) outcome Y (t) for t ∈ T , which is the outcome
that would be observed if T had been set to t.

The most fine-grained causal effect, i.e., individualized causal effect, is defined at
the unit level. For example, consider the case of binary treatment, namely
T = {0, 1}. For m-th unit,

ITE = Ym(1)− Ym(0).

In practice, the individualized causal effect often refers to the feature-specific
causal effect, defined by

E(Y (1)− Y (0) | X = x).
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Potential outcome framework

2.5 Target population

To clarify the population of interest, we need to specify a target population.

Definition (Target population)

Target population is the population that we want to make an inference on.

We denote P and E as the distribution and expectation on the target population.
In RS, the target population is usually the population consisting of all user-item
pairs, or all users, or all items, which depends on the specific scientific question.
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Potential outcome framework

2.6 Causal estimand

Definition (Causal estimand)

Causal estimand is a functional of the joint distribution of treatment, feature and
potential outcomes on the target population, providing a recipe for answering the
scientific question of interest from any hypothetical data whenever it is available.

Remarks:

The definition of the causal estimand does not involve the data collected
and the model adopted.

It also doest not involve the relationship between X , T and Y . In other
word, when defining causal estimand, it needn’t distinguish confounder,
collider, instrument variable .....

Have we made any assumptions so far?
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Potential outcome framework

2.7 The SUTVA assumption

Usually, the stable unit treatment value assumption (SUTVA) is necessary to
ensure the well-definedness of potential outcome Y (t).

Definition (SUTVA, Assumption 1)

(a) no-multiple-versions-of-treatment, only a single version of the treatment and
a single version of the control;

(b) no-interference, the potential outcomes of units are not affected by the
treatment status of the other individuals in the population.
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Potential outcome framework

2.8 No-multiple-versions-of-treatment and position bias

Definition (Position Bias (in implicit feedback data))

Position bias happens as users tend to interact with items in higher position of
the recommendation list regardless of the items’ actual relevance so that the
interacted items might not be highly relevant.

Insight 1: The position bias can be seen as a violation of no multiple versions of
treatment assumption.

Example: In the task of click-through rate prediction, suppose a unit is a
user-item pair. Define Yu,i (1) as the click behavior if the item i is exposed to the
user u. Then Yu,i (1) will rely on the position of exposure and multiple versions of
treatment occur.
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Potential outcome framework

2.8 No-multiple-versions-of-treatment and position bias

One method is to redefine each version of treatment as a different treatment.

Redefining each version of treatment as a different treatment may not
always be possible or desirable.

Formal definition: Define Ym(t, k t) be the potential outcome if T is set to value
t by means k t , where k t ∈ K t = {1, ..., nt}. The the multiple version of
treatment assumption is defined as

Ym(t, k) = Ym(t, k ′),∀m, t, and k , k ∈ K t . (1)

If (1) holds, then Ym(t) = Ym(t, k),∀k ∈ K t , the potential outcome is
well-defined. The no-multiple-versions-of-treatment also referred to as
treatment-variation-irrelevance.
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Potential outcome framework

2.9 Interference and conformity bias

Definition (Conformity Bias (explicit feedback data))

Conformity bias happens as users tend to rate similarly to the others in a group,
even if doing so goes against their own judgment, making the rating values do
not always signify user true preference.

Insight 2: The conformity bias can be seen as a violation of “interference”
assumption.
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Potential outcome framework

2.9 Interference and conformity bias

If there is no interference, we can define the potential outcomes

Ym(1),Ym(0).

Each unit has only two potential outcomes.

In the presence of interference, the potential outcome is defined by

Ym(T ),

where T = (T1, ...,TN). Each unit has 2N potential outcomes, N is the sample
size.

Formal definition of direct interference:

Ym(tm, t−m) = Ym(tm, t′−m), ∀t−m, t′−m
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Potential outcome framework

2.9 Interference and conformity bias

Ti YiXi

Tj YjXj

Ti YiXi

Tj YjXj
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Potential outcome framework

2.9 Interference and conformity bias

Consider a (backdoor) SCM
Xi = fX (εXi )

Ti = fT (Xi ) + εTi ,

Yi = fY (Ti ,Xi ) + εYi .

(2)

If there exists interference, let X = (X1, ...,XN). The SCM describing the data
generation process may be given as follows

Xi = fX (εXi )

Ti = fZ (X ) + εTi ,

Yi = fY (X ,T ) + εYi .

(3)
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Potential outcome framework

Scientific question Causal estimand

PO framework

Data

Identifiability/
Recoverability

Models

Conclusions

Assumptions
Assumptions

Assumptions

Figure 2: Causal analysis framework

Hereafter, we maintain the SUTVA assumption.
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Potential outcome framework

2.10 From scientific question to causal estimand

Significance: Through formalizing the scientific question into a causal estimand,
we can answer the following questions: what exactly is being estimated and for
what purpose.

The workflow of translating a scientific problem into a meaningful causal
estimand is summarized as follows.

1 Define the unit.

2 Define the treatment, feature, outcome and potential outcomes
corresponding to the scientific question under study.

3 Define the target population.

4 Define the causal estimand to answer the scientific question.
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Potential outcome framework

2.11 Examples

Example. (Binary treatment) An example is advertisement. A unit is a user-item
pair, the target population consists of all user-item pairs, and the outcome Yu,i is
the indicator of a click event, i.e., Yu,i = 1 if user u clicks item i , Yu,i = 0
otherwise. The treatment Tu,i = 1 if item i is exposed to user u, Tu,i = 0
otherwise, the potential outcomes Yu,i (1) and Yu,i (0) denote the indicator of
click event if the item is/isn’t exposed to the user u. The estimand of interest is
µ1(x) denoting the CTR, or τ(x) denoting the uplift of CTR.

For general treatment, define

µt(x) = E[Y (t) | T = t], t ∈ T , (4)

and for binary treatment, define

τ(x) = E[Y (1)− Y (0) | X = x ], (5)

which are the common estimands in RS.
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Recoverability and identifiability

Scientific question Causal estimand

PO framework

Data

Identifiability/
Recoverability

Models

Conclusions

Assumptions
Assumptions

Assumptions

Figure 3: Causal analysis framework
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Recoverability and identifiability

3.1 Definition of recoverability

Definition (Recoverability of target quantity Q)

Let A denote the set of assumptions about the data generation process and let Q
be any functional of the underlying distribution P(X ,T , {Y (t), t ∈ T }). Q is
recoverable if there exists a procedure that computes a consistent estimator of Q
for all strictly positive observed-data distributions.

Significance:

Explicitly presenting the recoverability assumptions underlying the debiasing
approaches.

Providing a desirable perspective to evaluate the debiasing methods by
assessing the assumptions and provides an opportunity to develop new
approaches by weakening the assumptions.
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Recoverability and identifiability

3.2 Common assumptions for recoverability

Assumption 1 (SUTVA): (a) no multiple versions of treatment; (b)
no-interference.

Assumption 2 (Consistency): Y (t) =
∑

t∗∈T I (t∗ = t)Y for any t ∈ T .

Assumption 3 (Positivity): P(T = t | X = x) > 0 for any t and x .

Assumption 4 (Conditional exchangeability): Y (t) ⊥ T | X , for any t ∈ T .
A stronger version is exchangeability: Y (t) ⊥ T , for any t ∈ T .

X

YT

Assumption 5 (Random sampling): P(x , t, y) = PO(x , t, y), where P
represents the target population distribution and PO represents the observed
sample distribution.
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Recoverability and identifiability

3.3 Random sampling

Target
Population

Observed
data {X,T,Y}

Observed
data {X,T,Y}

Remark: Random sampling assumption is defined with observed data.
(It does not involve potential outcome)
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Recoverability and identifiability

3.4 Example: backdoor criterion

For example, if E[Y (t) | X = x ] is of interest, we can reformulate it as

E[Y (t)|X = x ] = E[Y (t)|X = x ,T = t] = E[Y |X = x ,T = t], (6)

the first identity relies on the positivity and conditional exchangeability
assumptions

the second identity requires the consistency assumption.

By random sampling assumption, E[Y | X = x ,T = t] can be estimated
consistently from the observed data directly.
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Recoverability and identifiability

3.5 Consistency

The consistency assumption implies that

Ym(t) = Ym if Tm = t.

It links the potential outcomes in the hypothetical world to the observed
outcomes in reality.

real world interventional world

Tm Xm Ym Ym(0) Ym(1)

0 X X X
0 X X X
0 X X X
1 X X X
1 X X X
1 X X X
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New perspectives of biases in RS

4.1 Positivity and exposure bias

Assumption 3 (Positivity): P(T = t | X = x) > 0 for any t and x .

Definition (Exposure Bias (implicit feedback data))

Exposure bias happens as users can only be exposed to a part of specific items so
that unobserved interactions do not always represent negative preference.

Insight 3: Exposure bias can be viewed as a violation of the positivity assumption.
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New perspectives of biases in RS

4.2 Exchangeability and confounding bias

Assumption 4 (Conditional exchangeability): Y (t) ⊥ T | X , for any t ∈ T .
A stronger version is exchangeability: Y (t) ⊥ T , for any t ∈ T .

Definition (Confounding bias)

Confounding bias refers to the association (T and Y ) created due to the presence
of factors affecting both the treatment and the outcome, i.e., ∃t ∈ T , Y (t) 6⊥ T .
Usually it will lead to

E[Y (t)] 6= E[Y (t)|T = t].
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New perspectives of biases in RS

4.3 Random sampling and selection bias

Assumption 5 (Random sampling): P(x , t, y) = PO(x , t, y), where P
represents the target population distribution and PO represents the observed
sample distribution.

Definition (Selection bias)

Selection bias means that the sample distribution is different from that of target
population, i.e.,

P(x , t, y) 6= PO(x , t, y).
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New perspectives of biases in RS

4.4 Differences between confounding bias and selection bias

1 Confounding bias cannot be eliminated as the sample size increases.

2 Selection bias abounds in RS.

model selection bias: the system aims to recommend items that the
user may like by filtering out items with low predicted ratings.
user selection bias: users tend to rate recommended items that he likes
and rarely rates recommended items that he dislikes.

3 Like the case of confounding bias, biased estimates will be produced
regardless of the number of samples collected.

4 Conceptually, the bias arising from selection differs fundamentally from the
one due to confounding.

Selection bias comes from the systematic bias during the collection of
units into the sample. A well-designed sampling procedure can reduce
selection bias.
In contrast, confounding bias stems from the systematic bias inherently
determined by the causal mechanism (relations) among features,
treatment, and outcome, irrespective of the data collection process.
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New perspectives of biases in RS

4.4 Differences between confounding bias and selection bias

Randomization of treatment assignment can eliminate the effect of
(unmeasured) confounding bias, but cannot remove the influence of
selection bias

Selection bias comes from the data collection process and hence always
involves missing data. It is noteworthy that missing data is not a causal
problem and does not involve potential outcomes, while confounding bias is
defined with potential outcomes.

The missing data problem can be regarded as a selection bias if we restrict
the analysis to non-missing units.

Confounding bias can also be treated as a missing data problem. For
example, consider the case of binary treatment, then for each unit, only a
potential outcome (Y (1) or Y (0)) can be observed and the other can be
regarded as missing.
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New perspectives of biases in RS

4.4 Differences between confounding bias and selection bias

Table 2: Missing outcome data, selection bias

Oui Xui Yui

1 X X
1 X X
0 X
0 X

Table 3: Binary treatment, confounding bias

Tui Xui Yui Yui (0) Yui (1)

0 X X X
0 X X X
1 X X X
1 X X X
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New perspectives of biases in RS

4.4 Differences between confounding bias and selection
bias: an example

Example: A unit is a user, the target population is all users, Ou, Tu and Yu are
indicators of exposure, click, and conversion of user u on the advertising. We
treat Tu as treatment and define potential outcome Yu(1).

Table 4: Binary treatment, confounding bias

Ou Tu Xu Yu Yu(0) Yu(1)

1 0 X X X
1 0 X X X
1 1 X X X
1 1 X X X
0 0 X
0 0 X
0 1 X
0 1 X

Both selection bias and confounding exist.

If Yu(1) is of interest, can we regard it as a missing data problem?
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New perspectives of biases in RS

4.5 Main conclusions

Definition (User selection Bias in RS)

Selection Bias happens as users are free to choose which items to rate, so that
the observed ratings are not a representative sample of all ratings.

Definition (Inductive Bias in RS)

Inductive bias denotes the assumptions made by the model to better learn the
target function and to generalize beyond training data.
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New perspectives of biases in RS

4.5 Main conclusions

Table 5: New perspective of biases in RS.

Assumptions Biases in causal inference Biases in RS

Define causal estimands
SUTVA(a) undefined position bias
SUTVA(b) interference bias conformity bias

Recoverability

consistency noncompliance undefined
positivity undefined exposure bias
exchangeability confounding bias popularity bias
conditional exchangeability hidden confounding bias undefined
random sampling selection bias user selection bias, exposure bias

Model model specification model mis-specification inductive bias

Significance:

It provides an opportunity to apply the existing causal inference methods to
RS. For example, the non-compliance problem and interference bias have
been intensively studied in causal inference literature.

In addition, for the unique characteristics of RS, we expect that a series of
new methods will be developed by weakening or substituting the
assumptions.
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Formalize different scenarios in RS
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Formalize different scenarios in RS

Scientific question Causal estimand

PO framework

Data

Identifiability/
Recoverability

Models

Conclusions

Assumptions
Assumptions

Assumptions

Figure 4: Causal analysis framework
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Formalize different scenarios in RS

Notations

For general treatment, define

µt(x) = E[Y (t) | X = x ], t ∈ T ,

and for binary treatment, define

τ(x) = E[Y (1)− Y (0) | X = x ],

which are the common estimands in RS.
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Formalize different scenarios in RS

5.1 Overview of typical scenarios

Table 6: Correspondence between scenarios and biases

Scenarios Estimands Biases
Missing outcome data µ1(x) selection bias

Single treatment variable µ1(x), τ(x) confounding bias
Compliance τ̃(x) non-compliance and confounding bias

Policy Learning π(t|x) confounding bias
Data Fusion µ1(x), τ(x) hidden confounding bias
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Formalize different scenarios in RS

5.2 Scenario 1: Missing outcome data

Essentially, missing data is not a causal problem and it doesn’t involve potential
outcomes.
However, missing data problem is closely related to causal inference. Specifically,
if we regard the observing indicator O as the treatment, and define Y (1) as the
outcome if all the units could be observed. Here we use Y (1) instead of Y is to
underline that the outcome is part of observable. Then the most common
estimand is µ1(x) and the main challenge is selection bias.

Table 7: Data structure of scenarios 1.

Oui Xui Yui

1 X X
1 X X
0 X
0 X

Example 1: Movie rating websites.
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Formalize different scenarios in RS

5.3 Scenario 2: potential outcomes with single treatment

Scenario 2 discusses the case of a single treatment variable, which is the most
popular situation in RS. The data types of treatment can be binary, categorical,
or continuous variables. For illustration, assume that there are K treatment
levels, i.e., T = {0, 1, ...,K − 1}.

Table 8: Data structure of scenario 2.

Tui Xui Yui Yui (0) Yui (1) · · · Yu,i (K − 1)

0 X X X
0 X X X
1 X X X
1 X X X
...

...
...

...

K − 1 X X X
K − 1 X X X

Example 2: CTR prediction, CVR prediction, CTCVR prediction, uplift modeling.
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Formalize different scenarios in RS

5.3 Estimation of µ1(x): missing outcome

Assumption 6 (model specification of the target estimand): µ1(x) = fφ(x),

Then we specify a loss function L(y(1), fφ(x)), which is computable only when
O = 1. Define

π(x) = P(O = 1|X = x), g(x) = E[L(Y (1), fφ(X )) | X = x ].

Assumption 7 (model specification of nuisance parameters): (a) Propensity
score model specification: π(x) = πβ(x); (b) Error imputation model
specification: g(x) = gθ(x).

52 / 75



Formalize different scenarios in RS

5.3 Estimation of µ1(x): missing outcome

X

YO

For brevity, let Lu,i (φ) = L(Yu,i (1), fφ(Xu,i )). The loss function of IPS method is
given as

LIPS(φ;β) =
1

|D|
∑

(u,i)∈D

Ou,iLu,i (φ)

πβ(Xu,i )
.

Then under Assumptions 3-4 and 7(a), we have

E[LIPS(φ;β)] = E
[
Ou,iLu,i (φ)

π(Xu,i )

]
= E

[
E
{
Ou,iLu,i (φ)

πβ(Xu,i )
| Xu,i

}]
= E

[
E(Ou,i |Xu,i ) · E(Lu,i (φ)|Xu,i )

πβ(Xu,i )

]
= E[E[Lu,i (φ)|Xu,i )] = E[Lu,i (φ)].
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Formalize different scenarios in RS

X

O Y

U

X

O Y

Figure 5: Cases where IPS/DR method is invalid

It violates Assumption 4.
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Formalize different scenarios in RS

5.3 Estimation of µ1(x): missing outcome

For DR approach, the loss function is

LDR(φ;β, θ) =
1

|D|
∑

(u,i)∈D

[
gθ(Xu,i ) +

Ou,i{Lu,i (φ)− gθ(Xu,i )}
πβ(Xu,i )

]
.

Similarly, under Assumptions 3-4, it follows that

E[LDR(φ;β, θ)] = E
[
Lu,i (φ) +

{Ou,i − πβ(Xu,i )} · {Lu,i (φ)− gθ(Xu,i )}
πβ(Xu,i )

]
= E

[
Lu,i (φ) +

{π(Xu,i )− πβ(Xu,i )}{g(Xu,i )− gθ(Xu,i )}
πβ(Xu,i )

]
,

from which we can see that E[LDR(φ;β, θ)] = E[Lu,i (φ)] if either Assumption
7(a) or Assumption 7(b) holds, which is the property of doubly robust.
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Formalize different scenarios in RS

5.3 Estimation of µ1(x): missing outcome

Under Assumptions 2-4, let µ(x) = E[Y |X = x ], π(x) = P(T = 1|X = x),
µt(x) = E[Y (t)|X = x ] = E[Y |X = x ,T = t] for t = 0, 1. Many methods,
including S-learner, T-learner, U-learner, R-learner, X-learner, IPW-learner and
DR-learner, are based on the following equations.

τ(x) = µ1(x)− µ0(x)

= E(Y (1)− µ0(X )|X = x) = E(µ1(X )− Y (0) | X = x)

= E
{ TY

π(X )
− (1− T )Y

1− π(X )
|X = x

}
= E

{
Y − µ(X )

T − π(X )
|X = x

}
= E

{T{Y − µ1(X )}
π(X )

− (1− T ){Y − µ0(X )}
1− π(X )

+ µ1(X )− µ0(X )|X = x
}
.
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Formalize different scenarios in RS

5.4 Scenario 3: a combination of biased data and uniform
data

Let DB and DU are the set of user-item pairs for the biased dataset and unbiased
dataset, respectively. We assume the sample size of the unbiased dataset is much
smaller than that of the biased dataset, i.e., |DU | << |DB|, since it is costly to
collect unbiased samples through uniform policy.

Characters of biased and unbiased data

Biased data: large sample size; it is inevitable to suffer from the problem of
unmeasured confounders.

Unbiased data: small sample size; no (unmeasured) confounding bias; it is a
gold standard for evaluating the deibasing approaches.
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Formalize different scenarios in RS

5.4 Scenario 3: a combination of biased data and uniform
data

For most tasks in RS, both of the biased and the unbiased data have the same
data structure given as{

Biased data {(Xu,i ,Tu,i ,Yu,i ) : (u, i) ∈ DB},
Unbiased data {(Xu,i ,Tu,i ,Yu,i ) : (u, i) ∈ DU}.

For illustration, we assume the treatment is binary and µ1(x) = E[Y (1)|X = x ] is
the target quantity.
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Formalize different scenarios in RS

5.4 Scenario 3: a combination of biased data and uniform
data

Setting 1: no hidden confounders in the biased data

X

T Y

Figure 6: Biased data

X

T Y

Figure 7: Unbiased data
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Formalize different scenarios in RS

5.4 Scenario 3: a combination of biased data and uniform
data

In this setting, we assume the conditional exchangeability (Assumption 4) holds in
the biased data, which implies that X includes all confounders (or blocks every
backdoor path between T and Y ) and conditional on X is enough to control the
confounding bias. In this case, µ1(x) is recoverable with the biased data solely
under Assumptions 1-4, as discussed in section 3.

A natural question is: whether the unbiased data is helpful to improve the quality
of recommendations? Intuitively, the unbiased data provides a better way to
evaluate the resulting recommendation model, and hence it may give a better
optimizing direction for training the model parameters.
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5.4 Scenario 3: a combination of biased data and uniform
data

Setting 2: hidden confounders exist in the biased data

X

T Y

Figure 8: Unbiased data

X

T Y

U

Figure 9: Biased data

where U is unmeasured confounder.

Example: I select a movie to watch, one reason is that a friend tells me it is a
good movie. But the current recommender system is hard to collect this kind of
confounders.
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5.4 Scenario 3: a combination of biased data and uniform
data

If there exist hidden confounders, then the conditional exchangeability assumption
would be violated in the biased data. Without loss of generality, we consider the
task of CTR prediction and focus on the causal estimand µ1(x). Define

w(x) = E[Yu,i | Xu,i = x ,Tu,i = 1].

When there exist some hidden confounders, µ1(xu,i ) 6= w(xu,i ). Their difference
η(x) = µ1(x)− w(x) reflects the effect resulted from the unmeasured
confounders. Since we can estimate w(x) directly, it is sufficient to estimate the
control function η(x).

Assumption 8 (model specification on the control function) η(x) = ηγ(x).
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5.4 Scenario 3: a combination of biased data and uniform
data

Thus, an estimation strategy can be given as: first, estimate w(xu,i ) using DB;
second, estimate ηγ(xu,i ) using DU , for example, minimizing

arg min
γ

∑
(u,i)∈DU

(ru,i − ŵ(xu,i )− ηγ(xu,i ))2,

where ŵ(xu,i ) is an estimate of w(xu,i ). If we denote η̂(xu,i ) = ηγ̂(xu,i ), then the
final estimate of µ1(xu,i ) is ŵ(xu,i ) + η̂(xu,i ). Here, the model adopted for the
control function should be simple; otherwise, it will suffer the problem of
overfitting.
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5.5 Scenario 4: Policy learning

The recommendation problem also can be as a policy learning problem.

Definition (Policy)

A policy π is a map from the space X of feature to a probability distribution over
the treatment space T . Specifically, π(t|x) satisfies that

∑
t∈T π(t|x) = 1 for

any x ∈ X .

Policy learning seeks to find the optimal policy that maximizes the policy value,
which is defined as follows.

Definition (Policy value)

Policy value V (π) refers to the expectation of the reward under the policy π, i.e.,

V (π) = E

[∑
t∈T

π(t|X )Y (t)

]
= E

[∑
t∈T

π(t|X )µt(X )

]
.

The best possible policy is π∗ = arg maxπ∈Π V (π), where Π is the space
consisting of all possible policies.

64 / 75



Formalize different scenarios in RS

5.5 Scenario 4: Policy learning

Example. Suppose that there are a total of I items and U users.

A unit is a user; The target population is all the users;

the feature Xu is the attribute of user u;

the treatment Tu has I levels, denoted as T = {1, 2, · · · , I}, where Tu = i
means that item i is exposed to user u;

The reward caused by user u exposed to the item i as the potential
outcomes is denoted by Yu(i).

The observed data is {(Xu,Tu,Yu), u = 1, ...,U}. And the target quantity is the
optimal policy π∗.
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5.6 Scenario 5: Noncompliance

X

C Y

U

T

Data: {Xi ,Ti ,Ci ,Yi}, i = 1, ..., n.

T : exposure; C : click; Y : converse;

U: unmeasured confounders.

where C and Y are post-treatment variables.
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5.6 Scenario 5: Noncompliance

Let T be the treatment, and define potential outcome

C (1),C (0)

as the potential click behaviors. Let

Y (t, c) = Y (t,C (t) = c)

be the potential conversion if T = t and C (t) = c . Denote Y (t) = Y (t, c).

CTR (effect of T on C (1)):

τ1(x) = E [C (1) | X = x ] (7)

Usually, C (0) = 0, τ1(x) = E [C (1)− C (0) | X = x ].

CVR (effect of T on Y (1))

τ2(x) = E [Y (1) | X = x ] (8)

TCVR (effect of T on Y (1)− Y (0) )

τ3(x) = E [Y (1)− Y (0) | X = x ] (9)
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5.6 Scenario 5: Noncompliance

Let C be the treatment, Post-click CVR (effect of C on Y (1)),

τ4(x) = E [Y (1)− Y (0) | X = x ,C = 1]. (10)
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Figure 10: Causal analysis framework
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Summary

Explicating the perplexing causal concepts in RS within the potential
outcomes.

Providing a guideline of how to define, recover and estimate a causal
estimand.

Providing a new taxonomy and giving formal definitions of various biases in
RS from the perspective of violating what assumptions are adopted in
standard causal analysis.

Unifying many causal problems and debiasing methods in RS into a few
scenarios.

Revealing the key assumptions underlying various debiasing approaches.
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Discussion

How to determine which assumptions are violated given a scenario? When
applying the proposed framework to specific problems, practitioners /researchers
should

1 first determine the research goals and formulate them as causal estimands

2 and then consider the possible biases produced during data collection. If the
data is missing and cannot represent the target population, that is selection
bias

3 Next, we should discuss the relationships between features, treatment, and
outcome. If the features influence both treatment and outcome, there exists
confounding bias. Moreover, if we suspect that there are some unmeasured
confounders, see data fusion, IV....

4 In addition, if we have two variables of interest measured after the
treatment, it may be a non-compliance problem.
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Discussion

How to verify the assumptions? As discussed throughout, we need a variety of
assumptions to climb from association (data) to causality (causal conclusions).
These assumptions can be divided into

associational assumptions: e.g. Assumption 7, model specification of
propensity score. It is testable in principle.

causal assumptions: such as SUTVA, consistency, and conditional
exchangeability, cannot be directly verified from data, unless one resorts to
experimental control.

In practice, whether the causal assumptions hold need to be discussed by
expert’s knowledge (e.g. drawing causal graphs) for each specific problem.
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Discussion

Causal and RS

Classical causal inference focus on estimation and inference. For example,
through estimating causal effect to answer various scientific questions.
(Based on estimating equation and score function)

Many machine learning methods are pure prediction algorithms: e.g., deep
learning models. (Based on loss function)

Causal learning: to improve the stability, interpretability, and generalization
ability. (Trade-off between prediction accuracy and other desired properties)

Recommendation is a very interesting task:

Prediction accuracy is the gold standard; This implies that
recommendation is a prediction problem.
However, classical causal inference is not designed for prediction, so it
may not improve the prediction accuracy.
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Discussion

Why the prediction accuracy can be improved by using causal methods?

Treat the recommendation problem as an out of distribution (OOD)
problem, that is, the distributions between training set and test set are
different. (causal learning)
Many practical problems of interest in RS are essentially counterfactual
(or causal) problems, such as post-view click-through rate prediction,
post-click conversion rate prediction, and uplift modeling. In these
cases, the potential outcome is of interest, instead of the observed
outcome. A model that fits the observed outcome well may not fit the
potential outcome well.

We may consider the recommendation problem as two subproblems:

Prediction + Debiasing .
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