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Prior work & Motivation

» Prior work about direct electrical stimulation

1. Observations modalities of direct electrical stimulation effect: local field potential (LFP), electrocorticogram
(ECoG), functional magnetic resonance imaging (fMRI).

Basu, I. et al. Brain Stimul. 2019; Crowther, L. J. et al. Neurosci. Methods, 2019; Saenger, V. M. et al. Sci.
Rep. 2017

2. Modelling the effect of stimulation from multiple brain regions activities (e.g. neuropsychiatric disorders)
Kirkby, L. A. et al. Cell, 2018

3. Computational modelling with biophysical insights (e.g. epilepsy modeling)
Sritharan, D. Neural Comput. 2014

» Motivation

1. Establishing the ability to predict how ongoing stimulation (input) drives the time evolution (that is,
dynamics) of large-scale multiregional brain network activity (output) remains elusive.

2. Precise neuromodulation in an individual requires the accurate modelling and prediction of the
effects of stimulation on the activity of their large-scale brain networks is still unknown.



Methods and modelling

» Modelling framework, neural recordings and stochastic stimulation input
multilevel noise (MN) Yang, Y., J. Neural Eng. 2018
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Fig. 1| Input design, stimulation experiments and 10 modelling framework. Two male rhesus macaqgues (monkey A and |\/|)



Methods and modelling

» Input-output (10) modelling framework
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Fig. 1| Input design, stimulation experiments and 10 modelling framework.



Methods and modelling

» Dynamic input—output (10) model structure

A dynamic multiple-input—-multiple-output linear state-space mode(LSSM)

X = A% + By 4w (1)
() C(l)xl(c)—i_vl(c) ’

_ I

The ith LFP power features time series A dynamic latent state

u = [uk P uireq] represent the stimulation amplitude and frequency, respectively

; (i) N . . . . . . . . , B 1y (N0
w) € RY 1 v ¢ R are zero-mean white Gaussian noise with covariance matrix Q" = [EKW(’?) )(w 7V )] e RV (R,

o) — (A0 B Cl) QW)



Methods and modelling

» Multi-trial experimental design to dissociate single-trial input-driven dynamics

(Input-driven dynamics and intrinsic dynamics.)
The measured LFP power feature time seriescan be decomposed into two parts: Yx=Yi:t Yin

Xii11 = AXp 1 + Bug

@ input-driven dynamics i : (2)
Yir = CXk1
Xpr1 N = AXp N + Wi 3)

@ intrinsic dynamics
YiN = Cxk N + Vi

(1) 10 identification error
(error due to model mismatch)
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Fig. 7| the overall brain network dynamics can be decomposed into input-driven dynamics and intrinsic dynamics to explain two possible sources for forward-prediction error. a,b,



Methods and modelling

» Model fitting in the training set

Used the prediction error method to fit the model parameters (6={A,B,C,Q})

0= Y (-7.) (1)

h=1 £y, u e

where y, () is the forward predictor in equation (6)

The fitted model parameters ¢ via standard nonlinear optimization methods:

0 = argminJ(0), (12)
0

the fitted model parameters



Methods and modelling

» Forward prediction to predict the single-trial input-driven dynamics in the test sets.

How well it can predict the input-driven dynamics in the test sets?

Forming a single-trial forward predictor based on equation (1)

{ Sk+1 = Ask + Bug (4

?k — CSk
And the forward prediction of the latent state.
Sk = Buk_l - ABl.lk_z - AzBUk_3 + ... + Ak_lBllo — AkSU, (5)
Where the past inputs {ug, u;,u,, ... ,ux_; } and the initial state s, and the forward prediction of LFP power feature y,

¥« = CBuy_; + CABuy_, + CA’Bug 3 + ... + CA* 'Buy + CA*sy.  (6)



Model evaluation

> Model evaluation.

The linear correlation coefficient (CC) between the ground-truth single-trial input-driven dynamics and the predicted

single-trial input-driven dynamics
COV({?j}a {)_’j})

\/Var({j‘rj}) x Var({y;}) |

where Cov( 9 and Var( J represent the empirical covariance and variance of a time series, respectively.

CCper fold __

(7)
The average CC over all 4 cross-validation folds:
=
cC=-) cc™. 8
4; (8)

A higher cross-validated CC represents better prediction and thus a higher 10 prediction accuracy.
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Model evaluation

» To show the robustness of this paper’s results

How much variance can be explained from the dynamic 10 models.

ZLM (

2
Explained variance === EyPerfold — |1 i) x 100%, (9)
Var (yk)

The average EV over all four cross-validation folds for forward prediction
1 4
EV=-) EV", 10
y mZ (10)

where EV™ represents the EV in fold m as in equation (9).
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Methods and modelling

» Evaluated the 10 model in predicting the single-trial overall brain network dynamics.

One-step-ahead prediction of single-trial overall brain network dynamics during stimulation.

The optimal one-step-ahead prediction (minimize mean-squared error)

{ Zr = Az + Bup_1 + K(Yk—l — Czk_l)

13
o om , (13)

where z, is the one-step-ahead prediction of the latent state x; and K is the total Kalman gain
¥ = CBu; | + C(A — KC)Buy_, + C(A — KC)’Buy 3
+... +C(A —KC)*'Bug + CKy,_, + C(A — KC)Ky,_, (14)
+C(A — KC)’Ky,_; + ... + C(A — KC)* 'Ky,

Here the terms C(A — KCy~'Bu,_; in the sum are evaluated from j=1 to k and similarly for terms associated with y,_;.
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Results

» Prediction
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Fig. 2 | dynamic 10 models accurately predict brain network dynamics in response to stimulation.
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Results
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Fig. 3 | dynamic 10 models predict the response to stimulation across multiple brain regions.
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Results

» 10 model for prediction
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Fig. 4 | the dynamic structure of the 10 model is essential for accurate prediction.
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Methods and modelling

» Comparing to regression model, smoothing model, Non-oscillatory

Regression model, smoothing model and non-oscillatory model.

Vi = Buk + e, (15)
a zero-mean Gaussian noise
an overlapping window of 107, msp Y = Buy.. (16)

The smoothing model is a special case of LSSM with an identity state transition matrix:

(17)

{ Xk+1 = Xk + Bug + wy
V. = Cxg + vi ‘

The non-oscillatory model is another special case of LSSM in which the state transition matrix A in
LSSM in equation (1) is constrained to have positive real eigenvalues
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Methods and modelling

» Calculate at-rest functional controllability

2y = Tz + Dg,, (18)

r
where g, is a nominal scalar variable representing the input strength and zx = [pk ]
k

D=11,1,1,1,0,0, ... ,0] is a nominal input matrix = input g, is delivered at the stimulation node.

Next, on the basis of equation (18), we calculated the infinite-horizon
controllability Gramian W_ from T and D as the solution of the following
discrete-time Lyapunov equation*:

TW.T' — W. + DD’ = 0. (19)

T € R® >N iq the state transition matrix and is required to be stable (all eigenvalues within the unit disc)

17



Methods and modelling

» About at-rest functional controllability

Took the logarithm of the (i + 4)th diagonal elements of Wc as the functional controllability from the stimulation node
to the ith network node (note that the first 4 elements represent the stimulation node and thus their controllability is not
relevant to compute):

O = log(W,(i +4,i+4)),i=1,2,... ,N

s (20)

where W (i, j) represents the 7, jth element in the matrix W_.
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Methods and modelling

» Evaluate the relation of 10 prediction accuracy and at-rest functional controllability.

(M The relation of 10 prediction accuracy and at-rest functional controllability

N _ (7)
cc? o, =a+b09 . (21)

where the average at-rest functional controllability of the predictable power features within a brain region Difg,

and C%Dn Is the corresponding average 10 prediction accuracy , the corresponding average 10 prediction accuracy

as ccY)

region

@ Whether an LFP power feature will have a predictable response or not?
0 =1, if o)

I. l,ng.}o', (22)

70 =, if 0" <o

where ZU) = 1 represents a predictable ith LEP power feature and 0 otherwise.

@ If at-rest functional controllability can also predict the response strength of the network nodes?

the response strength S = log (% Z (j‘rk)z) , (23)

L k=1

where 4 is the length of the test set. 9



Results
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Fig. 5| at-rest functional controllability explains the variability in the 10 prediction accuracy at different network nodes.



Methods and modelling

» Compare to nonlinear IO model NLARX

NLARX model. The NLARX model structure''® models the output LFP power
feature at each time k as

M _ (Na+NpNu) R _
Y. — ¢’RN“,N1, + Zamﬁm : W(%‘Ym): (24)
m=1 m

. - M ~ (Na | NpNu) ﬁ —
o= R+ Do () (25)
m=1 ﬁm
-~ . . . !
Ry,.N, = [Yk—I!Yk—Z! =Yk—N¢=“;c—1&u:r—2= =“E:-NJ ) (26)

Zhang, Q. IEEE Trans. Neural Netw. 1997
21



Results

» Nonlinear dynamic NLARX
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Fig. 6 | Nonlinear dynamic 10 modelling does not outperform the linear dynamic 10 models.



» Visualisation of system response

X, ,=AX +(B+ob)u +w,
Simulated brain {
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Fig. 8| the fitted 10 models enable closed-loop control of a simulated internal brain state.
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Future directions.

1. General nonlinear 10 modelling does not improve the linear dynamic 10 model.
2. Future long-term chronic stimulation and recordings experiments can be used to

further explore the nonlinearity in the 10 response when more training data are
available.
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Your comment is highly appreciated!

Thank you for your attention
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Further discussion

What is the application evaluation of clinical modulation with
data-driven modeling and prediction of dynamical system?

In this study, the latent state in the proposed model does not
. have direct interpretation. How about the integration of prior
.‘ knowledge in neuroscience for dynamical modeling?
9 How to figure out the high dimension and strong coupling
properties in large-scale brain network?

Q&A :




