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Prior work & Motivation

➢ Prior work about direct electrical stimulation 

➢ Motivation

1. Observations modalities of direct electrical stimulation effect: local field potential (LFP), electrocorticogram 

(ECoG), functional magnetic resonance imaging (fMRI).

Basu, I. et al. Brain Stimul. 2019; Crowther, L. J. et al. Neurosci. Methods, 2019; Saenger, V . M. et al. Sci. 

Rep. 2017

2. Modelling the effect of stimulation from multiple brain regions activities (e.g. neuropsychiatric disorders)

Kirkby, L. A. et al. Cell, 2018

3. Computational modelling with biophysical insights (e.g. epilepsy modeling)

Sritharan, D. Neural Comput. 2014

1. Establishing the ability to predict how ongoing stimulation (input) drives the time evolution (that is, 

dynamics) of large-scale multiregional brain network activity (output) remains elusive.

2. Precise neuromodulation in an individual requires the accurate modelling and prediction of the 

effects of stimulation on the activity of their large-scale brain networks is still unknown.
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Fig. 1 | Input design, stimulation experiments and IO modelling framework. 

Methods and modelling

➢ Modelling framework, neural recordings and stochastic stimulation input

multilevel noise (MN)

Two male rhesus macaques (monkey A and M)

Yang, Y., J. Neural Eng. 2018
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Fig. 1 | Input design, stimulation experiments and IO modelling framework. 

Methods and modelling

➢ Input-output (IO) modelling framework
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➢ Dynamic input–output (IO) model structure

The ith LFP power features  time series 

A dynamic multiple-input–multiple-output  linear state-space mode(LSSM)

represent the stimulation amplitude and frequency, respectively

A dynamic latent state

are zero-mean white Gaussian noise with covariance matrix 

Methods and modelling



7

① input-driven dynamics 

② intrinsic dynamics

➢ Multi-trial experimental design to dissociate single-trial input-driven dynamics

(Input-driven dynamics and intrinsic dynamics.)

Methods and modelling  

Fig. 7 | the overall brain network dynamics can be decomposed into input-driven dynamics and intrinsic dynamics to explain two possible sources for forward-prediction error. a,b,

The measured LFP power feature time seriescan be decomposed into two parts:
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➢ Model fitting in the training set

Used the prediction error method to fit the model parameters (θ={A,B,C,Q})

Methods and modelling  

The fitted model parameters    via standard nonlinear optimization methods:
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➢ Forward prediction to predict the single-trial input-driven dynamics in the test sets.

Forming a single-trial forward predictor based on equation (1) 

And the forward prediction of the latent state.

Methods and modelling  

How well it can predict the input-driven dynamics in the test sets？

Where                                                            and     and
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where Cov(·) and Var(·) represent the empirical covariance and variance of a time series, respectively.

The average CC over all 4 cross-validation folds:

A higher cross-validated  CC represents better prediction and thus a higher IO prediction accuracy. 

Model evaluation  

➢ Model evaluation.

The linear correlation coefficient (CC) between the ground-truth single-trial input-driven dynamics and the predicted 

single-trial input-driven dynamics
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How much variance can be explained from the dynamic IO models.

The average EV over all four cross-validation folds for forward prediction

Model evaluation  

➢ To show the robustness of this paper’s results

Explained variance
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➢ Evaluated the IO model in predicting the single-trial overall brain network dynamics. 

The optimal one-step-ahead prediction (minimize mean-squared error)

Methods and modelling   

One-step-ahead prediction of single-trial overall brain network dynamics during stimulation.
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Fig. 2 | dynamic IO models accurately predict brain network dynamics in response to stimulation.

Results

➢ Prediction
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Fig. 3 | dynamic IO models predict the response to stimulation across multiple brain regions.

Results
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Fig. 4 | the dynamic structure of the IO model is essential for accurate prediction.

Results 

➢ IO model for prediction
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Regression model, smoothing model and non-oscillatory model. 

Methods and modelling  

The smoothing model is a special case of LSSM with an identity state transition matrix:

a zero-mean Gaussian noise 

➢ Comparing to regression model, smoothing model, Non-oscillatory

The non-oscillatory model is another special case of LSSM in which the state transition matrix A in 

LSSM in equation (1) is constrained to have positive real eigenvalues
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➢ Calculate at-rest functional controllability 

Methods and modelling  

is the state transition matrix and is required to be stable (all eigenvalues within the unit disc)

and
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Methods and modelling  

➢ About at-rest functional controllability 

Took the logarithm of the (i + 4)th diagonal elements of Wc as the functional controllability from the stimulation node 

to the ith network node (note that the first 4 elements represent the stimulation node and thus their controllability is not 

relevant to compute):
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③ If at-rest functional controllability can also predict the response strength of the network nodes?

the response strength

Methods and modelling  

① The relation of IO prediction accuracy and at-rest functional controllability

where the average at-rest functional controllability of the predictable power features within a brain region

and              is the corresponding average IO prediction accuracy , the corresponding average IO prediction accuracy 

as

② Whether an LFP power feature will have a predictable response or not?

➢ Evaluate the relation of IO prediction accuracy and at-rest functional controllability.
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Fig. 5 | at-rest functional controllability explains the variability in the IO prediction accuracy at different network nodes.

Results

➢ At-rest functional 

controllability
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Methods and modelling  

Zhang, Q. IEEE Trans. Neural Netw. 1997

➢ Compare to nonlinear IO model NLARX
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Fig. 6 | Nonlinear dynamic IO modelling does not outperform the linear dynamic IO models.

Results

➢ Nonlinear dynamic NLARX



Results

➢ Visualisation of  system response
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Fig. 8 | the fitted IO models enable closed-loop control of a simulated internal brain state.
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Fig. 8 | the fitted IO models enable closed-loop control of a simulated internal brain state.

Results
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Future directions. 

1. General nonlinear IO modelling does not improve the linear dynamic IO model.

2. Future long-term chronic stimulation and recordings experiments can be used to 

further explore the nonlinearity in the IO response when more training data are 

available.



Your comment is highly appreciated!

Thank you for your attention 
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Further discussion

27Q&A

What is the application evaluation of clinical modulation with 

data-driven modeling and prediction of dynamical system?

In this study, the latent state in the proposed model does not 

have direct interpretation. How about the integration of prior 

knowledge in neuroscience for dynamical modeling?

How to figure out the high dimension and strong coupling 

properties in large-scale brain network?


